Sub-seasonal drought forecasting in the European Alps with EFAS data in a machine-learning-aided hybrid approach

Annie Y.-Y. Chang, Konrad Bogner, Maria-Helena Ramos, Shaun Harrigan, Ryan Padrón, Christian M. Grams, Daniela I.V. Domeisen, Massimiliano Zappa

Droughts in Switzerland

Disruption of Goods **Transportation** in River Rhine Source: SRF

Source: NZZ Low Lake Level for Tourism

Pressure on Ecosystem

Water Shortage for **Cattle** in Alps

Hydrological Drought in the European Alps

ITItaly FR France CH Switzerland DE Germany AT Austria SI Slovenia

European Alpine Space

ITItaly FR France CH Switzerland DE Germany AT Austria SI Slovenia

EFAS - The European Flood Awareness Systems

- Continental model in operation since 2012 by ECMWF
- Pan-European products:
 - overview maps of flood probabilities up to 15 days in advance
 - seasonal streamflow outlooks
 - flood impact assessment
 - flash-flood risk
- V4.0: ~5km
- Data:
 - Reanalysis 1990 2019
 - Reforecast 1999 2018

KGE (-∞ to 1)

- EFAS reanalysis streamflow data 1990-2019
- 7-day moving window
- 95 stations
- 50 95970 km²

Critical Success Index (CSI 0 - 1)

 $CSI = \frac{hits}{hits + misses + false \ alarms}$

15% low-flow threshold : Hits (H), Misses (M), False Alarms (FA), and Correct Negatives (CN)

HEPEX Workshop 14.09.23, Chang et al.

Key Findings:

- Model performance deteriorates for the more extreme drought events
- Catchment size and location have no clear correlation with model performance
- EFAS tends to simulate <u>shorter</u> events
- EFAS tends to simulate more water in summer

How can we improve this?

Deep Learning: Temporal Fusion Transformer (TFT)

• What?

- Combines LSTM and Transformer models
- Uses LSTM layers to encode local temporal patterns and a transformer layer to capture global dependencies.
- Why?
 - Exploratory
 - Attention weight for feature importance more interpretable than LSTM

European Weather Regimes

"Weather regimes are **quasi-stationary, recurrent, and persistent states** of the large-scale extratropical circulation that describe most of the multi-day variability in the Atlantic-European region."

- Christian Grams at KIT

⁸Exploring the Use of European Weather Regimes for Improving User-Relevant Hydrological Forecasts at the Subseasonal Scale in Switzerland®

ANNIE Y.-Y. CHANG^(D),^{a,b} KONRAD BOGNER,^a CHRISTIAN M. GRAMS,^c SAMUEL MONHART,^d DANIELA I. V. DOMEISEN,^{b,e} AND MASSIMILIANO ZAPPA^a

Local Hydrological Events

Post-processing EFAS

- Multiple time series: **One model** for all stations
- Multi-horizon forecasting: Daily quantile predictions from 1 to **32 days** lead time
- Target: **Q_obs**
- Heterogeneous features: EFAS discharge, Weather Regime indices (7), date, catchment area, elevation
- Training + Validation: continuous time series of observed/ reanalysis data (June 1999 – May 2009)
- Testing: **reforecast** data (June 2009 to Dec. 2012)
- Interpretable predictions: Information on variable importance

Preliminary Results – 2011-05-15 Laško (SI)

Feature Importance


```
We want to understand...
```

How much skill improvement can we achieve with the hybrid set up for monthly drought prediction using EFAS data?

• Any spatial pattern in the Alpine region?

• What are the main features driving the improvements and why?

Next Steps & Challenges

- Hyper parameter tuning
- Additional static feature:
 - Lake damping factor
 - Glacier coverage
 - Drought index
 - ...
- How to train the model for low flow?

Bakcup - Case Studies: Rheinhalle, Basel 2003

- OBS. - EFAS - PREVAH

Backup - European Weather Regimes

Precipitation Anomaly

Temperature Anomaly

