JOINTLY VERIFYING AND EVALUATING SEASONAL FORECASTS FROM CLIMATE SERVICES: EXPERIENCE FROM THE H2020 CLARA PROJECT

L. Crochemore, S. Materia, E. Delpiazzo S. Bagli, A. Borrelli, F. Bosello, E. Contreras, F. Dalla Valle, S. Gualdi, J. Herrero, F. Larosa, R. Lopez, V. Luzzi, P. Mazzoli, A. Montani, I. Moreno, V. Pavan, I. Pechlivanidis, F. Tomei, G. Villani, C. Photiadou, M.J. Polo and J. Mysiak

HEPEX workshop – Norrköping – Sep 15 2023

Context – the (((c L A R A \ project (2017-2020)

- **User Forums**
- Sustain services marketability and value
 - When forecast-based, assess forecast quality

• Co-generation between data providers, service developers and and backs through a Multidepending on the sector?

Hydro-climate services

• Providing seasonal forecasts based on C3S forecast inputs

	Sector	Service name	Aim	Developer	User involved	
	Water	ROAT - Reservoir Operation	Support operations of multi-objective	University of	Technicians of the Béznar-	
	resources	Assessment Tool	reservoirs	Córdoba	Rules reservoir	
	management					
	Agriculture	WRI - Water Resources for	Support decision-making for both	Arpae	Land Reclamation and	Villani e
		Irrigation	water procurement and water		Irrigation Consortium of	(2021)
			allocation		Romagna and Burana	_
	Hydropower	SCHT - Smart Climate	Simplify decision-making processes	GECOSistema	Enel Green Power	—Essente (2020)
	production	Hydropower Tool	by predicting hydropower production			Contrer
		SHYMAT - Small Hydropower	Support operation of run-of-river	University of	Endesa technicians	(2020a;
		Management-Assessment	plants	Córdoba		
		ΤοοΙ				
	Solar energy	SEAP - Solar Energy	Provide information about the optimal	^I University of	Magtel technicians	
	production	Assessment and Planning	tracking system for dynamic	Córdoba		
			collectors			

Verification

- Category-based accuracy

Deterministic framework

- Accuracy
- Correlation

observations

simulations of PV production based on ERA5

linear model

ERA5-driven climatology

Verification

 \rightarrow Expected value (quantitative or qualitative)

Realisation comes from a **reference** Forecast probability can come from a benchmark

 \rightarrow Perfect?...

Valuation

Lesson #1 – A joint verification-evaluation

- Requires the verification of value-related variables (additional impact models)
- Is easier for service improvement than service prototyping

白

Requires data on system uses (reservoir operations, water abstractions, PV system characteristics...)

Lesson #2 – A joint verification-evaluation

Had we had 3 more years...

Climate scientist's role

Social scientist's role

End user's role

Climate service developer's role

Perspectives

Value-oriented metrics ?

- Non-symmetrical effect of overestimation/underestimation
- Weighted contingency matrix
- et al. (2023, HESS), ...

Forecasts in the value chain

- Forecast quality is only a partial element of the service full value chain
- of it

• Works have explored such metrics/joint assessment Richardson (2000), Roulin (2007, HESS) Laugesen

• Here we assumed that the user always follows the forecast information and has a perfect understanding

Thank you!

Akshay Singhal PhD at IISERB, Bhopal, India

New game

Flash floods Compound events Vulnerability Communication **Decision-making**

louise.crochemore@univ-grenoble-alpes.fr Contact

