On-demand

Built-up areas

A skill analysis of the European Flood Awareness System

Casado-Rodríguez, Jesús^a; Carton De Wiart, Corentin^b; Grimaldi, Stefania^a; Salamon, Peter^a

^aEuropean Commission – Joint Research Centre, Ispra, Italy ^bEuropean Centre for Medium-Range Weather Forecasts, Reading, UK

Introduction Data

The European Flood Awareness System is a hydrological forecast and monitoring system whose aim is to support preparatory measures before major flood events.

- LISFLOOD-OS hydrological model github.com/ec-jrc/lisflood-code
- 4 meteorological forecasts:
 - Deterministic: ECMWF-HRES DWD-ICON
 - Probabilistic: ECMWF-ENS COSMO-LEPS
- Spatial characteristics:
 - Greater European domain
 - 5 km resolution
- Temporal characteristics:
 - Forecasts every 12 h
 - 10 days lead time
 - 6 h temporal resolution
- Access:
 - Web portal
 - Formal/informal flood notifications to EFAS partners

EFAS forecast July 15th 2021 (efas.eu/en)

Objective

To assess if EFAS skill in predicting flood events can be optimized by varying the notification criteria.

- 1. Can the catchment area threshold be reduced?
- 2. How should the total probability be computed?
- 3. What's the optimal probability threshold?
- 4. Is persistence a valuable criteria?

>= 2000 km²	> 48 h	1 deterministic + 1 probabilistic	$P(Q \ge Q_5) \ge 0.30$	3 consecutive
area	lead time	> approach	probability	persistence

Introduction Data

Geographical extent

Fixed reporting points with a contributing area larger than 500 km^2 and a KGE larger or equal than 0.5.

Temporal extent From October 2020 to June 2023

Discharge data

- «Observed»: EFAS v4.0 reanalaysis.
- Predicted: EFAS v4.0 reforecast.
- Discharge asociated with the 5-year return period.

Experiment 1: individual meteorological models

Compare the individual NWP models against the current approach and set a baseline.

Experiment 2: combinations of models

Find the best combination of NWP models and whether it adds value over the baseline.

European

Commission

Introduction Data

Imbalanced
classificationForecastNotifiedNon-notifiedObservedFloodNon-floodfalse alarms?

$$\begin{aligned} recall &= \frac{hits}{observed} = \frac{hits}{hits + misses} \\ precision &= \frac{hits}{predicted} = \frac{hits}{hits + false \ alarms} \\ f_{\beta} &= (1 + \beta^2) \frac{precision \cdot recall}{\beta^2 \cdot precision + recall} \end{aligned}$$

The objective is to find the criteria that maximize $f_{0.8}$

P ≥ 0.45

— P ≥ 0.50

— P ≥ 0.55

— P ≥ 0.65

− $P \ge 0.75$

--- P ≥ 0.70

• Probabilistic models outperform the current notification criteria. EUE will be the baseline.

— P ≥ 0.25

--- P ≥ 0.30

— P ≥ 0.35

• There is a range of equally good performing probability thresholds.

P ≥ 0.05

 $P \ge 0.10$

 $P \ge 0.15$

• The persistence criterion is only useful for the deterministic models.

P ≥ 0.85

 $P \ge 0.90$

 $P \ge 0.95$

- Member weighted and Brier weighted are the two most promising approaches:
 - Similar skill.
 - Similar optimal criteria: no persistence and a probability threshold around 50%.

efas.eu/en

11

1. Can the catchment area threshold be reduced?

• The area limit could be reduced to 1,000 km².

2. How should the total probability be computed?

- Probabilistic NWP outperform the current criteria.
- The Brier weighted and member weighted approaches show the highest skill.

3. What's the optimal probability threshold?

• The optimal value is 50%.

4. Is persistence a valuable criteria?

• The optimal criteria does not require persistence.

